Transport Layer

Introduction

The OSI Transport Layer

APPLICATION

The Transport layer prepares application
data for transport over the network and
processes network data for use by
applications.

DATA l T

Application

Presentation

Transport

l NETWORK DATA T

Session

Transport

Network

Data Link

Physical

Purpose of the Transport Layer

Enabling Applications on Devices to Communicate

LT <)-./..’

- . @ LY.
N)
TCP/IP Model TCP/IP Model
- >
Application ¥ y Application
j.(The Transport layer moves '_A —]
L V] data between applications on > T u'l

Y
devices in the network.

Purpose of the Transport Layer...

Tracking the Conversations

INSTANT [MULTIPLE WEB PAGES
MESSAGING ... &= -
| [7| =i
i - -
- “_- o -
E-MAIL
IP TELEPHONY
To: you@example.com {V oIP)

From: me@example.com
Subject: E-mail

STREAMING VIDEO

MNetwork

The Transport layer segments the data and manages the separation of data for different applications. Multiple
applications running on a device receive the comect data.

Purpose of the Transport Layer...

Segmentation

MULTIPLE WEB PAGES

L]

INSTANT o=~
MESSAGING .. &=

o

E-MAIL

4
o : / _’IP TELEPHONY
o: you@example.com (VOIP)

From: me@example.com

Subject: E-mail @

STREAMING VIDEO

The Transport layer divides the data into segments that are easier to manage and transport.

Controlling the Conversations

Transport Layer Services

MULTIPLE WEB PAGES

L)

INSTANT === "
MESSAGING ... ©

A
= ’ IP TELEPHONY
(VOIP)

)

STREAMING VIDEO

E-MAIL

To: you@example.com

From: me@example.com w

Subject: E-mail -

Segmentation allows session K
— multiple applications

can use the network at the same
time.

Z

Data facilitates data carriage by the lower
network layers.

can be performed on the data in the segment to check if
the segment was changed during transmission.

Controlling the Conversations...

Transport Layer Services
MULTIPLE WEB PAGES

INSTANT .
MESSAGING
El
e,
bt -
E-MAIL

4
_/ 4P 1P TELEPHONY
To: you@example.com (VOIP)

From: me@example.com
Subject: Email

STREAMING VIDEO

Establishing a Session ensures the
application is ready to receive the data.

Same order delivery ensures that the
segments are reassembled into the proper
order.

Reliable delivery means lost segments are
resent so the data is received complete.

Flow Control manages data delivery if
there is congestion on the host.

Support Reliable Communication

« |P Telephony
« Streaming Video

Required Protocol Properties
« Fast
« Low overhead
= Does not require

acknowledgements
* Does not resend lost
data
« Delivers data as it
arrives

Transport Layer Protocols
= o
TCP/IP Model
= SMTP/POP (Email)
0S| Model
© - HTTP
Application
Application
Presentation
Session Required Protocol
e Properties
Transport j U E=Eey :l T Reliable
* Acknowledge data
Network Internet I « Resend lost data
* Delivers data in order
Data Link sent
Physical Network Access

Application developers choose the appropriate Transport Layer protocol based on the nature of the

application.

TCP and UDP

TCP and UDP Headers

TCP Segment

Bit (15) Bit (16) Bit (31)

Source Port (16) Destination Port (16)
Sequence Number (32)
Acknowledgement Number (32)

Header Length (4) Reserved (6) Code Bits (6) Window (16)
Checksum (16) Urgent (16)
Options (0 or 32 if any)

APPLICATION LAYER DATA (Size varies)

UDP Datagram

Bit (15) Bit (16) Bit (31)

Source Port (16) Destination Port (16)
Length (16) Checksum (16)

20 Bytes

APPLICATION LAYER DATA (Size varies)

Port Addressing

Port Addressing

—

To: you@example.com

From: me@example.com "
Subject: Email ==
= -
Applications |- = iectronic Mai HTML Page Internet Chat
Protocols ¥
A A A
Port Numbers POP3 HTTP M
Application Application Application
Transport Port Data Port Data Port Data
> 110 80 531

Data for different applications is directed to the correct application because each application has a unique port number.

Port Addressing...

Port Numbers

Port Number Range Port Group
Port Number Range Port Group
0to 1023 Well Known (Contact) Ports

Port Mumbers

i 0to 1023 Well Known (Contact) Ports
1024 to 49151 Registered Ports
49152 to 65535 Private and/or Dynamic Ports 1024 to 48151 Registered Ports

49152 to 65535 Private and/or Dynamic Ports

Registered TCP Ports: Well Known TCP Ports:

1863 MSN Messenger 21 FIP Registered UDP Ports: Well Known UDP Ports:

2000 Cisco SCCP (VolP) 23 Telnet 1812 RADIUS Authentication Protocol 69 TFTP

8008 Altemate HTTP @ iy 5004 RTP (Voice and Video Transport Protocol) 520 RIP

8080 Altemate HTTP 80 HTTP 5060 SIP (VoIP)

110 POP3

194 Internet Relay Chat (IRC)
443 Secure HTTP (HTTPS)

Tcp ports Udp ports

Port Numbers

Port Number Range Port Group

0to 1023 Well Known (Contact) Ports

1024 to 49151 Registered Ports

49152 to 65535 Private and/or Dynamic Ports
Registered TCP/UDP Common Ports: Well Known TCP/UDP Common Ports:
1433 MS SQL 53 DMNS
2948 WAP (MMS) 161 SNMP

531 AOL Instant Messenger, IRC

Port Addressing...

INELOLAL SULpuL

C:\>»netstat

Active Connections

Proto
TCP
TCP
TCP
TCP
TCP
TCP

Crhy>

Local
kenpc

kenpc:
kenpc:
kenpc:
kenpc:
kenpc:

Address

13126

3158

3159
3160

316l
3led

Foreign Addres=ss
152.168.0.2:netbics-ssn
207.138.126.152 :http

207.138.126.163::http
207.138.126.169 :http

sc.msn.com:http
www.cisco.com:http

State
ESTABLISEED
ESTABLISHED

ESTABLISHED
ESTABLISHED

ESTABLISHED
ESTABLISHED

Roles of the Transport Layer-
Segmentation and Reassembly — divide
and conquer

Transport Layer Functions

APPLICATION LAYER DATA

The Transport layer
divides the data into Piece 1 Piece 2 Piece 3
pieces and adds a header
for delivery over the UDP Datagram Or TCP Segment
network.

Header Piece 1 Header Piece 1
Header Piece 2 Header Piece 2 Y
Header Piece 3 Header Piece 3

A A

TCP Header provides for:
* Source & destination (ports)
« Sequencing for same order delivery
« Acknowledgement of received
segmenis
« Flow control and congestion
management

UDP Header provides for:
= Source and destination
(ports)

TCP Making Conversations Reliable

TCP Segment Header Fields

Bit 0 15 31

The fields of the TCP header enable TCP to provide connection-oriented, reliable data communications.

TCP server Processes

Clients Sending TCP Requests

Server
Client 1 HTTP: Port 80 Client 2
SMTP: Port 25
Client requests to TCP server
HTTP Request: SMTP Request:
Source Port: 49152 Source Port: 51152
Destination Port: 80 I(Use well known port > IDestination Port: 25

numbers as the
destination port.

Request Destination Ports Request Source Ports

Clients Sending TCP Requests

HTTP response: Server SMTP Response:
Source Port 80 Source Port 25
Destination Port 49152 Destination Port 51152

Client 1 HTTP: Port 80
SMTP: Port 25

Client 2

Client requests to TCP server

HTTP Request: SMTP Request:
Si to TCP
ISouroe Port: 49152 I Server response 1o ISource Port: 51152
client uses the source port

Destination Port: 80 from the request packet as Destination Port: 25
the destination port.

Response Destination Ports Response Source Ports

TCP connection Establishment and Termination

TCP Connection Establishment and Termination
TCP Connection Establishment and Termination

A B
A B

Send SYN @ Send SYN

(SEQ=100 CTL=8YN) \ SYN received (SEQ=100 CTL=SYN) | YN received
SYN received / Send SYN, ACK

(SEQ=300 ACK=101 CTL=SYN, ACK)

CTL = Which control bits in the TCP header are setto 1

CTL = Which control bits in the TCP header are set to 1 B sends ACK response and SYN request to A.

A sends SYN request to B. SYN ACK

TCP Connection Establishment and Termination

g i
@ Send SYN
(SEQ=100 CTL=SYN) _\———)- SYN received
SYN received| o ———— | SendSYN.ACK @
(SEQ=300 ACK=101 CTL=SYN, ACK)
@ Established \\j
(SEQ=101 ACK=301 CTL=ACK)

CTL = Which control bits in the TCP header are set to 1

A sends ACK response to B.

TCP connection Establishment and
Termination....

TCP Connection Establishment and Termination

A B

< =

@ Send FIN
| FIN received

A sends FIN request to B.

End

TCP Connection Establishment and Termination

g ﬁ
@ Send FIN
x| FiN received
/ Send ACK
ACK received

Send FIN
FIN received /
@ Send ACK \
ACK received

A sends ACK response to B.

@
©)

End

TCP 3-way Handshake — step 1

TCP 3-way Handshake (SYN)

13 6.201109 192.168.254.254 10.1.1.1 DNS Standard query r.
14 6.202100 10.1.1.1 192.168.254.254 TCP 1069 > http [SYn |
15 6.202513 192.168.254.254 TORSESE TCP http > 1069 [SYAN
16 6.202543 10.1.1.1 192.168.254.254 TCP 1069 > http [ACK
17 & 207661 14 1 1 1 107 1AR I84 264 HTTD ~ET / WTTO/A 1

Frame 14 (62 bytes on wire, 62 bytes captured)
@ Ethernet 1I, Src: Quantaco_bd:0¢:7¢ (00:c0:9f:bd:0c:7¢), Dst: Cisco_cf:66:4(
4 Internet Protocol, Src: 10.1.1.1 (10.1.1.1), Dst: 192.168.254,.254 (192.168.:
= Transmission Control Protocol, Src Port: 1069 (1069), Dst Port: http (80), ¢
source port: 1069 (1069)
pestination port: http (80)
Sequence number: 0 (relative sequence number)
Header length: 28 bytes
= Flags: 0x02 (SYN)
0... = Congestion window Reduced (CwR): NOt set
.0.. = ECN-Echo: NoOt set v

Protocol Analyzer shows initial client request for session in frame 14

TCP segment in this frame shows:

» SYN flag set to validate an initial Sequence number

» Randomized sequence number valid (relative value is 0)

* Random source port 1069

» Well known destination port is 80 (HTTP port) indicates web server (httpd)

TCP 3-way Handshake — step 2

TCP 3-way Handshake (SYN, ACK)

15 ©.ZUL109 19Z.108,294,254 I0.1.1.1 DNS Stanoara query | .

14 6.202100 10.1.1.1 192.168.254.254 TCP 1069 > http [S5v -

15 6.202513 192.168.254.254 10.1.1.1 TCP http > 1069 [S

16 6.202543 10.1.1.1 192.168.254.254 TCP 1069 > http [A

17 6.202651 10.1.1.1 192.168.254.254 HTTP GET / HTTP/1.1
3 Frame s on wire, 62 bytes captured)

3+ Ethernet II, Src: Cisco_cf:66:40 (00:0c:85:cf:66:40), Dst: Quantaco_bd:0c:
Internet Protocol, Src: 192.168.254.254 (192.168.254.254), Dst: 10.1.1.1 C
- Transmission Control Protocol, Src Port: http (80), Dst Port: 1069 (1069),
Source port: http (80)
pestination port: 1069 (1069)

Sequence number: 0 (relative sequence number)

Acknowledgement number: 1 (relative ack number)

Header Tength: 28 bytes ’
= Flags: 0x12 (SYN, ACK) . I
4 >

A protocol analyzer shows server response in frame 15

* ACK flag set to indicate a valid Acknowledgement number

» Acknowledgement number response to initial sequence number as relative value of 1
* SYN flag set to indicate the Initial sequence number for the server to client session

* Destination port number of 1069 to corresponding fo the clients source port

« Source port number of 80 (HTTP) indicating the web server service (httpd)

TCP 3-way Handshake — step 3

TCP 3-way Handshake (ACK)

13 6.201109 182.168.254.254 3 75 5 Ea DNS Standard query ref.
14 6.202100 10.1.1.1 192.168.254.254 TCP 1069 > http [SYN]
15 6.202513 192.168.254.254 s (e P B B B TCP http > 1069 [SYN,

6 6.202543 10.1.1.T 192.168.254.254 TCP 1069 > http |ACK[
17 6.202651 10.1.1.1 192.168.254.254 HTTP GET / HTTP/1.1

@ Frame 16 (54 bytes on wire, 54 bytes captured)
+ Ethernet II, Src: Quantaco_bd:0c:7c¢ (00:c0:9f:bd:0c:7c), Dst: Cisco_cf:66:40
Internet Protocol, sSrc: 10.1.1.1 (10.1.1.1), Dst: 192.168.254.254 (192.168.25
= Transmission Control Protocol, Src Port: 1069 (1069), Dst Port: http (80), Se
Source port: 1069 (1069)
pestination port: http (80)
Sequence number: 1 (relative sequence number)
Acknowledgement number: 1 (relative ack number)
Header length: 20 bytes

= Flags: 0x10 (ACK) :
4 >

Protocol Analyzer shows client response to session in frame 16

The TCP segment in this frame shows:

* ACK flag set to indicate a valid Acknowledgement number

» Acknowledgement number response to initial sequence number as relative value of 1
» Source port number of 1069 fo corresponding

* Destination port number of 80 (HTTP) indicating the web server service (hitpd)

v 4

TCP Session Termination

TCP Session Termination (FIN)

19 6,203857 192.168.254.254 10.2.1.1 HTTP HTTP/1.1 200 OK (1.
‘ 20 6,203876 192.168.254.254 10.1.1.1 TCP http > 1069 [FIN, |
[21 6.203899 10.1.1.1 192.168.254.254 TCP 1069 > hrtp [ACK]
22 6.204139 10.1.1.1 192.168.254.254 TCP 1069 > http [FIN,
23 6.204416 192.168.254.254 b0 P51 R 4 2 TCP http > 1069 [ACK]
[o4 A RO2EAR 1A T 11 109 TAR ITA IKA Ane crandand muoru A 1

|# Frame 20 (60 bytes on wire, 60 bytes captured)
|# Ethernet 1I, Src: Cisco_cf:66:40 (00:0c:85:cf:66:40), Dst: qQuantaco_bd:0c:7c¢
|& Internet Protocol, sSrc: 192.168.254.254 (192.168.254.254), Dst: 10.1.1.1 (10.:
|z Transmission control Protacol, Sre Port: http (B0), Dst pPort: 1069 (1069), Se
Source port: http (80)
pestination port: 1069 (1069)
Sequence number: 440 (relative sequence number)
Acknowledgement number: 414 (relative ack number)
Header length: 20 bytes

v

e B ST e

Il «} »

A protocol analyzer shows details of frame 20, TCP | The destination and source ports
FIN request. The header field contents and values

OrED GG

TCP Session Termination (ACK)

19 6.203857 192.168.254.254 10.1.1.1 HTTP HTTP/1.1 200 OK (.
20 6.203876 192.168.254.254 10.1.1.1 TCP http > 1069 [FIN,
21 6.203899 10.1.1.1 192.168.254.254 TCP 1069 > http [ACK]
22 6.204139 10.1.1.1 192.168.254.254 TCP 1069 > http [FIN,
23 6.204416 192.168.254.254 10.1.1.1 TGP http > 1069 [AcK]
74 A& RO2GEAR TN 1 11 107 1AR 284 I8A Ane erandard Anar A

*

I

1069 (1069)

pestination port: http (80)

Sequence number: 414

Acknowledgement number: 441
Header Tlength: 20 bytes

Frame 21 (54 bytes on wire, 54 bytes captured)
Ethernet II, Src: QuantaCo_bd:0c:7¢ (00:c0:9fF:bd:0c:7¢c), Dst: Cisco_cf:66:40
Internet Protocol, src: 10.1.1.1 (10.1.1.1), Dst: 192.168.254.254 (192.168.25
Transmission Control Protocol, Src Port: 1069 (1069), Dst Port: http (80), Se
source port:

(relative seguence number)
(relative ack number)

A protocol analyzer shows details of frame 21, TCP

ACK response.

[-
(<] N
The destination and source ports

The header field contents and values

TCP Segments Reassembly

TCP Segments Are Re-Ordered at the Destination

Different segments may

take different routes.

iy

gﬁﬂ

—

Data

Data is
divided into
segments.

e

Segment 1
Segment 2
Segment 3
Segment 4
Segment 5

Segment 6

%.

Having taken
different routes
to the
destination,
segments
arrive out of
order.

Segment 1
Segment 2
Segment 6
Segment 3

Segment 5

Segment 4

TCP re-
orders the
segments to
the original
order.

Segment 1
Segment 2
Segment 3
Segment 4
Segment 5

Segment 6

TCP Acknowledgment with Windowing

Acknowledgement of TCP Segments

Source Port | Destination Port = Sequence Number Acknowledgement
Numbers
Start with byte #1, | received 10 bytes
| am sending 10 starting with byte #1.
bytes. | expect byte #11 next.
| ’ -
Network) Q .
Source Dest. Seq. Ack. 10 bytes
1028 23 1 - Source Dest. Seq. Ack.
Source Dest. Seq. Ack. 23 1028 1
1023' 23 11 - men ﬂ'

more bytes starting with byte #11

TCP Retransmission

TCP Retransmission

| received the next
group. | will send an
acknowledgment.

ISP 2

Server Farm FTP

TCP Congestion Control- Minimize
Segment Loss

TCP Segment Acknowledgement and Window Size

Sender Window size = 3000 Receiver
1500 bytes
Sequence number 1 L 2 Receive 1- 1500
1500 b
Sequence number 1501 ytes 3 Receive 1501 - 3000
Receive Acknowledge - Acknowledgement number 3001
1500 bytes .
Seguence number 3001 2 Receive 3001 - 4500
1500 bytes .
Sequence number 4501 = Receive 4501 - 6000
Receive Acknowledge - Acknowledgement number 6001

The window size determines the number of bytes sent before an acknowledgment is expected.
The acknowledgement number is the number of the next expected byte.

TCP Congestion Control- Minimize
Segment Loss...

TCP Congestion and Flow Control

Sender Window size = 3000 Receiver
1
Sequence number 1 500 bytes 3 Receive 1 - 1500
1500 bytes
Sequence number 1501 Y 2 Receive 1501 - 3000
Receive Acknowledge i Acknowledgement number 3001
Sequence number 3001 1500 bytes - Segment 3 is lost because of congestion at
the receiver.
Sequence number 4501 1500 bytes 3 Receive 4501 - 6000
Receive Acknowledge =t Acknowledgement number 3001

Window size = 1500

If segments are lost because of congestion, the Receiver will acknowledge the last received sequential
segment and reply with a reduced window size.

UDP

UDP Low Overhead Data Transport

g Cemb g
Sender Receiver

Data

Zr

UDP does not establish a connection
before sending data.

UDP provides low overhead data transport because it has a small datagram
header and no network management traffic.

Zre

UDP Datagram Reassembly

UDP: Connectionless and Unreliable

Different datagrams
may take different \

routes. \
g ‘g

Datagram 1 Datagram 1 Out of order
Data —_— datagrams are not
: Datagram 2 Having taken Datagram 2 re-ordered.
X I?ata 'Is different routes
divided into Datagram 3 to the Datagram 6
datagrams. destination, Loct data
Datagram 4 datagrams Datagram 5 ost datagrams are
arrive out of not re-sent.
Datagram 5 order. Datagram 4

Datagram 6

UDP server Processes and Requests

UDP Server Listening for Requests

Server

Server Applications

Client DNS requests will be received
on Port 53.
Client RADIUS requests will be
received on Port 1812.

Client requests to servers have well known ports numbers as the destination port.

UDP Client Processes

Clients Sending UDP Requests

Clients Sending UDP Requests
Server

Server

i . Client 2

Client 1 DNS: Port 5\ Client 2 Client 1 /NS' Port 5\ ien
. RADIUS: Port 1812

g DS P g g g

Client 1 DNS Request: Client 2 RADIUS User
Authentication Request: [

Client 1 DNS Request: Client 2 RADIUS User
Authentication Request:

Source Port 49152 Source Port 49152 | N\

S Port 51152
Destination Port 53] Source Port 51152 Destination Port 53 \\ | —— J
\ | Destination Port 1812 | \ Destination Port 1812
g Use random port numbers as the source port.

Client requests to UDP server use well known port numbers as the
destination port.

Request Destination Ports Request Source Ports Request Destination Ports Request Source Ports

UDP Client Processes...

Clients Sending UDP Requests

Server

Server DNS response: Server RADIUS Response: Clients Sending UDP Requests
Sourcs Port 53 Source Port 1812 s ONS Server s RADIUS R
Destination Port 49152 1 { Destination Port 51152 || srver DINS response: erver esponse:

Server response to UDP client uses the source port from the request
packet as the destination port.

[Source Port 53] [Source Port 1812
Client 1 ONS: Port 53 Client 2 Destination Port 49152 Destination Port 51152
RADIUS: Port 1812) _
7 7 Client 1 DNS: Port 53 Client 2
g RADIUS: Port 1812 g

Server response to UDP clients use well known port numbers as the

Client 2 waiting for server source port.
Client 1 waiting for server DNS RADIUS response
response Client 2 waiting for server
on Port 49152] [on Port 51152] Client 1 waiting for server DNS RADIUS response
response
on Port 49152 on Port 51152

Response Destination Ports Response Source Ports Response Destination Ports Response Source Ports

Summary

The Transport layer provides for data network needs by:

Dividing data received from an application into segments

Adding a header to identify and manage each segment

Using the header information to reassemble the segments back into application data
Passing the assembled data to the correct application

UDP and TCP are common Transport layer protocols.

UDP datagrams and TCP segments have headers prefixed to the data that include a source port number and destination port
number. These port numbers enable data to be directed to the correct application running on the destination computer.

TCP does not pass any data to the network until it knows that the destination is ready to receive it. TCP then manages the
flow of the data and resends any data segments that are not acknowledged as being received at the destination. TCP uses
mechanisms of handshaking, timers and acknowledgements, and dynamic windowing to achieve these reliable features.
This reliability does, however, impose overhead on the network in terms of much larger segment headers and more network
traffic between the source and destination managing the data transport.

If the application data needs to be delivered across the network quickly, or if network bandwidth cannot support the
overhead of control messages being exchanged between the source and the destination systems, UDP would be the
developer's preferred Transport layer protocol. Because UDP does not track or acknowledge the receipt of datagrams at the
destination - it just passes received datagrams to the Application layer as they arrive - and does not resend lost datagrams.
However, this does not necessarily mean that the communication itself is unreliable; there may be mechanisms in the
Application layer protocols and services that process lost or delayed datagrams if the application has these requirements.

The choice of Transport layer protocol is made by the developer of the application to best meet the user requirements. The
developer bears in mind, though, that the other layers all play a part in data network communications and will influence its
performance.

The End

